
1FlixMobility

Lessons learned using Postgres in data science 
projects
PyData 2022, Berlin

Jacopo Farina
jacopofarina.eu

@jacopofar

github.com/jacopofar

https://jacopofarina.eu
https://twitter.com/jacopofar
https://github.com/jacopofar/


2

How do we process so much data fast enough for 
it to be useful?
• Lots of data (at peak >5 tickets per second)
• Must be done at least daily
• Data must be fresh



3

So what was the problem? 

Large volumes of data takes long time to process

Application should remain stable even when schema changes

Outages can happen due to peak time activity and upgrades

1

2

3

Accurate pricing requires real-time data and
processing real-time data is hard



4FlixMobility

Problems with the database?

• Lots of data, performance issues

• Different Python libraries

• How to keep track of the queries

• How to keep track of schema changes



5FlixMobility

The problem we are discussing:

Our use case, your mileage may vary

• Use of historical data

• Mostly batch, but some web apps 

• Python and Postgres



6FlixMobility

The common way to prepare data for data science

Operational 

systems

Fast and small 

operations, access 

mostly recent data

ML / Business 

Intelligence

Massive read of 

historical data, 

freshness not 

essential

ETL

ETL = Extract Transform 

Load



7FlixMobility

Our solution: Kafka as the main (only) source

Events from Kafka are continuously persisted in 
DB tables using Debezium, a CDC (Change Data 
Capture).

The data is fresh, but it's not an ETL (no 
guarantees on the order).



8FlixMobility

ETL steps using materialized views (based on normal views)

A cronjob can refresh a materialized view, the code is on the 
schema and easy to inspect.

When based on a view it's trivial to switch to have fresh data 
and benchmark



9FlixMobility

Question

Who can easily say how long does a specific query 
take on average?



10FlixMobility

A SQL file for each query

Each project has a folder with all the queries as 
SQL files to simplify searching, editing and 
running them by hand.



11FlixMobility

Our trick: a single helper for all queries

Three advantages of having a single helper:
• retrying - the database can be restarted without breaking the 

pipeline
• transforming when needed (e.g., change the datatype)
• profiling the execution time - logged and examined as part of the 

whole application profile



12FlixMobility

An overview of how the application spends time



13FlixMobility

What about insertion?



14FlixMobility

Ways to insert a lot of data quickly

• execute_many is the bare minimum

• COPY is the best way when upsert is not needed
• Unlogged tables are faster to create for temporary data

• Psycopg2 has the (ugly) execute_values

• Prepared statements incoming with Psycopg3
detailed comparison: https://jacopofarina.eu/posts/ingest-data-into-postgres-fast/

https://jacopofarina.eu/posts/ingest-data-into-postgres-fast/


15FlixMobility

Preprocessing data and storing as a file

Static or historical data that is queried the same way over and over can 
be persisted in a file.

Parquet allows for column access

Arrow efficiently represents data as binary

(.. and Snappy for compression)

Pandas and Spark can easily handle these files



16FlixMobility

Handling the schema changes

We want the schema to be handled as code, with all the 
advantages (single source, pull requests, versioning).

• SQLAlchemy supports migration but it's very limited 

• Sqitch, very powerful but requires a complex config

• For us, a repository with a schema.sql file is enough



17FlixMobility

pg_dump --schema-only to get the schema from a DB

pg_virtualenv to create an ephemeral Postgres instance



18FlixMobility

Use Postgres system tables to profile the overall usage

See: https://pgstats.dev/

https://pgstats.dev/


19

Join the ride…

We have open positions for data scientists and engineers,
discover your new opportunity here!

https://flix.careers/


20

Do you have any questions?



21



22FlixMobility

Accessing the data from Python

(essentially, accessing from Pandas)

• Psycopg2: the one supported by SQLAlchemy

• Asyncpg: binary protocol, nice API. Async only, which 
means no Pandas

• Psycopg(3): new kid on the block, binary protocol 
and optional async, SQLAlchemy support on the way



23FlixMobility

Keep everything running as decoupling/migration goes on

We need to know who reads what to plan migrations.

E.g., line variations are going to disappear

As the complexity grows, we started to document the product-
table matrix, but it's a manual process



24FlixMobility

Use permissions to track usage metadata

Assigning users to the different components of the pipeline with 
minimal access to every table, so that permissions track who uses 
what and not who can use what.

The who-accesses-what becomes explicit part of the schema, 
easy to check and enforce



25FlixMobility

Static analysis

Since all the queries are SQL files, we can parse them from the 
code and infer this information.

Not a trivial task:

• SQL has many dialects and versions and has extensive syntax

• SQLAlchemy and others have different placeholders

• Python's DBAPI has three different parameter passing styles



26FlixMobility

SQLFluff is a linter (and parser) for many SQL dialects including 
Postgres, written in Python.

Supports pretty much every parameter passing style (we did a PR).

Allows programmatic access to the parser, still WIP



27FlixMobility

Currently we can use sqllineage to extract this mapping. It's 
essential, but it works. A few edge cases remains:

• Generated queries
• Jinja generation can be covered by SQLFluff

• Pandas / SQLAlchemy core operations – static analysis can be 
extended to Python code, but probably is not worth it


