Lessons learned using Postgres in data science
projects Jacopo Farina

PyData 2022, Berlin

https://jacopofarina.eu
https://twitter.com/jacopofar
https://github.com/jacopofar/

How do we process so much data fast enough for

it to be useful?
* Lots of data (at peak >5 tickets per second)

* Must be done at least daily
 Data must be fresh

Accurate pricing requires real-time data and

processing real-time data is hard

Large volumes of data takes long time to process
Application should remain stable even when schema changes

Outages can happen due to peak time activity and upgrades

Problems with the database?

Lots of data, performance issues
Different Python libraries

How to keep track of the queries

How to keep track of schema changes

The problem we are discussing:
Our use case, your mileage may vary
e Use of historical data

* Mostly batch, but some web apps
 Python and Postgres

FLiX

The common way to prepare data for data science

Operational ML / Business
systems Intelligence
Fast and small Massive read of
operations, access ETL = Extract Transform historical data,
mostly recent data Load freshness not
essential

FLiX

Our solution: Kafka as the main (only) source

Events from Kafka are continuously persisted in

DB tables using Debezium, a CDC (Change Data
Capture).

The data is fresh, but it's not an ETL (no
guarantees on the order).

FLiX

ETL steps using materialized views (based on normal views)

A cronjob can refresh a materialized view, the code is on the
schema and easy to inspect.

When based on a view it's trivial to switch to have fresh data
and benchmark

MATERIALIZED VIEW ext.distances mvliew

¥

ext.distances view,;

Question

Who can easily say how long does a specific query
take on average?

A SQL file for each query

Each project has a folder with all the queries as
SQL files to simplify searching, editing and
running them by hand.

Our trick: a single helper for all queries

popularity df = execute query(
'get relations popularity’,
stop relations=stop relations,

ride departure date start=start date,
ride departure date end=end date,

Three advantages of having a single helper:

* retrying - the database can be restarted without breaking the
pipeline

* transforming when needed (e.g., change the datatype)

* profiling the execution time - logged and examined as part of the
whole application profile

An overview of how the application spends time
Tasks execution time: manual-ufc-pred-wrk-4mz8h.log

get_rides_in_lines_and_dates.sql
ride_relation_min_price.sql I | | | | | || I | | |
get_ride_relation_min_price | | | || | | | | | | | | |
gat_mappings.soql
holidays_data.sql

get_holidays_data

campeting_rides.sql | | |
get_inner_competition_data | | | |
orders_by_relation.sql | | | | | | | | |

get_order_items | | | || | | | | | || |

CnlyNominalMinPrices. transform | | | | | | | |
AddPredictions. transform I | I I | I

get_alphas_from_ride_relations_sqgl

sorepeaetens o] 1 11 11 [[] e rin i

send _predictions to kafka

get_prices.sql

ey 11 0 1 18 mw N Ial

What about insertion?

FLiX

Ways to insert a lot of data quickly
 execute_manyis the bare minimum

* COPY is the best way when upsertis not needed
* Unlogged tables are faster to create for temporary data

* Psycopg?2 has the (ugly) execute_values

* Prepared statementsincoming with Psycopg3

detailed comparison:

https://jacopofarina.eu/posts/ingest-data-into-postgres-fast/

Preprocessing data and storing as a file

Static or historical data that is queried the same way over and over can
be persisted in a file.

Parquet allows for column access
Arrow efficiently represents data as binary
(.. and Snappy for compression)

Pandas and Spark can easily handle these files

X Y z X Y Z
’ Xy Yi Zy Xi Vi Z,
o Yo & Xa Y= 25
E{s Y5 23 Xs ¥ Zs
F(u Y Zy X Y 1 Zy
I *5 ¥s zs ¥ Ys | 25

projection push down predicate push down

@/u minousmen.com

Handling the schema changes

We want the schema to be handled as code, with all the
advantages (single source, pull requests, versioning).

 SQLAlchemy supports migration but it's very limited
e Sqitch, very powerful but requires a complex config

* For us, a repository with a schema.sqlfile is enough

dump schema:
1f the file does not exist, the volume mount will create a directory
owned by root m(
touch schema local.sql
docker run \
--rm -\
-v ${PWD}/schema.sql:/srv/schema.sql \
-v ${PwWD}/schema local.sql:/srv/schema local.sql \
$ (POSTGRES IMAGE) \
‘ pg virtualenv -t sh -c \
'psql -d $SPGDATABASE -f /srv/schema.sql \
&& pg dump $(PG DUMP OPTIONS) -d $5PGDATABASE | sed -e '/™--/d' > /srv/schema local.sql’
.PHONY: dump schema

dump remote schema:
docker run \

| --rm \

¢ (POSTGRES IMAGE) \
.PHONY: dump remote schema

pg dump $(PG DUMP OPTIONS) $(POSTGRES CONN STR) | sed -e '/"--/d' > schema upstream.sql

pg dump --schema-only to get the schema from a DB

pg virtualenv to create an ephemeral Postgres instance

Use Postgres system tables to profile the overall usage

pg_stat_ssl

pg_stat_activity
j_backend_memory_contexts
EXPLAIN
pg_stat_statements
pg_stat_user_functions
pg_prepared_xacts
pg_locks
|_stat_progress_create_index
pg_stat_all_indexes
pg_stat_all_tables
pg_statio_all_indexes
pg_statio_all_tables
pg_statio_all_sequences

pg_is_wal_replay_paus
pg_current_wal_lsn()
pg_wal_lsn_di
pg_ls_logdi
po_current_logfile()
pg_replication_sl
pg_stat_replication_sl
pg_stat_replication
pg_stat_subscription
pg_stat_wal_recei

pg_stat_archiver
pg_ls_archive_statusdir()

pg_stat_data base_cunﬂ‘:t:

Postgres Observability

Client Backends
Query Planning
Shared Buffers
Query Execution
Indexes Usage Tables Usage

Buffers 10 SLRU Caches

Storage

See: https://pgstats.dev/

Tables/Indexes Data Files

pg_buffercache

pg_shmem_allocations
pg_stat_slru

*_stat_activity

_stat_database
pg_stat_progress_vacuum

pg_stat_progress_analyze
_stat_all_tables

g_stat_wal

g_ls_waldir()
_walfile_name()
current_wal_insert_Isn()

last_wal_receive_Isn()
pg_last_wal_replay_Isn()

pl]_stat_bgwriter

pg_stat_progress_basebacku
pgstattuple

pg_tablespace_size()
pg_database_size()
pg_total_relation_size()
pg_relation_size()
pg_table_size()
pg_indexes_size()
pg_ls_tmpdir()

FLiX

https://pgstats.dev/

Join the ride...

e e —

We have open positions for data scientists and engineers,
discover your new opportunity !

https://flix.careers/

Do you have any questions?

FLi) 20

Accessing the data from Python
(essentially, accessing from Pandas)
* Psycopg?2: the one supported by SQLAlIchemy

* Asyncpg: binary protocol, nice API. Async only, which
means no Pandas

* Psycopg(3): new kid on the block, binary protocol
and optional async, SQLAlIchemy support on the way

A

Keep everything running as decoupling/migration goes on
We need to know who reads what to plan migrations.
E.g., line variations are going to disappear

As the complexity grows, we started to document the product-
table matrix, but it's a manual process

Use permissions to track usage metadata

Assigning users to the different components of the pipeline with
minimal access to every table, so that permissions track who uses

what and not who can use what.

The who-accesses-what becomes explicit part of the schema,
easy to check and enforce

Static analysis

Since all the queries are SQL files, we can parse them from the
code and infer this information.

Not a trivial task:

 SQL has many dialects and versions and has extensive syntax
 SQLAIchemy and others have different placeholders
 Python's DBAPI has three different parameter passing styles

SHLFLUFF

The SQL Linter for Humans

SQLFluffis a linter (and parser) for many SQL dialects including
Postgres, written in Python.

Supports pretty much every parameter passing style (we did a PR).

Allows programmatic access to the parser, still WIP

Currently we can use sqllineage to extract this mapping. It's
essential, but it works. A few edge cases remains:

* Generated queries
* Jinja generation can be covered by SQLFluff

* Pandas/ SQLAlchemy core operations — static analysis can be
extended to Python code, but probablyis not worth it

